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Abstract—This work presents a novel state-of-the-art, 

streamlined skydive tracking system. Key components and 

contributions of the system include methods for efficient data 

consolidation from multiple sensors and immediate intuitive 

feedback. These attributes afford rapid training, near-real-time 

tracking and status notification, and post-jump accident 

investigation and flight debriefing for skydivers. The system also 

incorporates a simulator which can be used prior to jumps. 

Furthermore, the proposed methods were extensively evaluated both 

quantitatively and qualitatively. For post flight analysis, a 2016 

injury was analyzed within fifteen minutes after receiving flight data, 

and detailed 3D flight path, data and graphics were generated. It 

isolated the cause of the accident, showed the best camera angles for 

the jump and simultaneously displayed the flight data while also 

evaluating jumpers, spotters and pilots. This performance is 

considerably expedited as compared to current methods. For training 

and real-time feedback, hundreds of real jumps and training with the 

system were evaluated. With the tracking and feedback system, 

rookie jumpers overall doubled their landing accuracy between the 

first and second week of jumps. Indeed, the technology presented 

here benefits the training, evaluation and continual safety of civilian 

and military skydivers and smokejumpers. 

 

Keywords—skydiving, jumper training, sensor-driven tracking, 

data-fusion, error-correction. 

I. INTRODUCTION 

kydiving is a highly skilled and coordinated task in 

which accidents can have drastic consequences. To 

prevent accidents, provide simulated training and debriefing, 

this work presents a method for a sensor-driven process for 

near-real-time diver tracking. Even the most highly trained 

individuals can benefit from tracking simulated failure 

training. Quantitative and qualitative evaluations were 

performed on real jumps (over four hundred total jumps), the 

results of which are encouraging towards the use of this 

system for all skydivers from training to post-jump feedback. 

For real-time data acquisition, a holistic approach to jump 

analysis is utilized, whereby data from global positioning 

system (GPS) units, inertial measurement units, apriori 

topological terrain data, flight path, and pilot and spotter 

information are all consolidated to rapidly inform qualitative 

feedback to the jumper. This low-cost approach is robust to 

poor sensor readings by leveraging multiple types of 
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inexpensive, lightweight sensors and a filter-based classifier 

to isolate and extrapolate only reliable sensor information 

from hundreds of thousands of relevant data points. The data 

is then transformed it into intuitive, 3D visual feedback during 

or almost immediately following the jump. 

II. BACKGROUND 

A. Dive Tracking, Accident Investigation 

Precise maneuvering is paramount for safety during 

skydiving freefall. This includes control in translational 

directions, including forward/backward, up/down, right/left, 

which is especially important to ensure that the diver keeps an 

appropriate distance from other divers [1]. In fact, poor 

maneuvering has been strongly associated with fatal accidents, 

and even slight changes in body posture can often lead to 

aerial instability. Accidents in skydiving oftentimes manifest 

as the diver crashing into the ground or with other divers, and 

are commonly due sudden spin [1]. In order to minimize flight 

accidents and casualties, an autonomous system capable of 

performing skydive tracking both in near-real-time and in 

simulation to prevent and investigate incidents is proposed. 

One of the causes of loss of stability in skydiving 

maneuvers is human error, which is defined as any 

degradation to system performance caused by human action or 

failure to act [2]. Most studies investigating the role of human 

error in aviation mishaps and fatalities indicate that human 

error has caused more accidents than equipment or aircraft 

failures. Several studies found that human error, indeed, 

contributes to more than 50% of aviation mishaps and 

fatalities. Therefore, tracking and simulations present a robust 

way to both investigate dive performance and train humans 

prior to potentially fatal mishaps. Simulations can highlight 

the role that inaccurate behaviors play in such accidents and 

thus reinforce prevention of such errors [2]. 

B. Error Correction 

Continuous and precise positioning in skydiving is requisite 

for near-real-time and useful feedback, both during and post 

jump. Two types of sensors are used to provide the position of 

a mobile skydiving subject: absolute sensors and 

dead-reckoning sensors [3,4]. GPS sensors are an example of 

absolute sensors. Although it can reach precision on the order 

of centimeters, it lacks credibility in some cases due to 

multipath or mask effects. This often results in unwanted 

mixture with other sensors and data streams. In contrast, 

dead-reckoning sensors, for example gyroscopes and 

accelerometers (also known as inertial sensors), have the 

advantage of giving continuous positioning information. The 

information given in this case has the advantage of being 

independent from the external environment [3,5,6,7]. 
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Inertial sensors may be classified into two groups: inertial 

measurement units (IMU) and the inertial navigation system 

(INS). The IMU delivers raw data that is corrected from scale 

factors and biases using gyroscopes and accelerometers. The 

INS is an IMU which output is sent to navigation algorithms to 

provide position, velocity and attitude of an object [3,5,6,7]. 

Several methods have been used to consolidate good data 

and reject outliers from multiple sensors. The Kalman filter 

has been employed to study GPS/INS data fusion [8,9]. 

Experimental results have shown that extended degradation or 

loss of GPS signal can lead to positioning errors quickly 

drifting with time. This indicates that GPS/INS association is 

less than satisfactory. To resolve this, additional sensors have 

been suggested [3]. Augmenting with additional sensors can 

result in more precise positioning information. The Kalman 

filter is especially suitable for the integration of multiple 

sensors. This can be done without reconstructing the filter [4]. 

Another way to reject errors is through the RANSAC based 

outlier rejection method [10,11]. This method allows for the 

random selection of subsets of feature correspondences. In 

visual odometry and other computer vision tasks, RANSAC 

estimates egomotion based on random subsets. The number of 

used subsets is given by  

 

                            (1) 

 

Here, s represents the minimum number of data points needed 

in the estimation, p represents the probability that at least one 

sample contains inliers only and  defines the assumed 

percentage of outliers in the data set [11]. 

Upon convergence of the Kalman filter, inliers can be 

classified via a threshold of Euclidean reprojection error. The 

final estimate is given using a final estimation step with all 

inliers of the best sample. The proposed method added on to 

the RANSAC based outlier rejection scheme generates a 

robust estimation and outlier rejection method [11].  

III. METHODS 

A. Overall Workflow 

The Kalman filter is amenable for multisensory 

consolidation [3,4,5]. Validity domains of each sensor in the 

filter are defined in order to reject data errors when detected. 

This ensures the reliability of the data fusion [3,8,9]. In 

layman’s terms, the Kalman filter is an estimator that employs 

a prediction step and an update step.  

To use Kalman Filters for non-linear problems, 

linearization around the current state is often performed using 

a first order Taylor-approximation. This generates the 

Extended Kalman Filter. The update step is often performed 

to reduce the approximation error caused by Taylor 

approximation and consider assumed Gaussian noise. 

B. Data Processing 

Two Kalman filter models can be considered [3,12]. First 

recall the standard Kalman filter state model (2). The state 

model chosen is a Wiener process acceleration model. It is a 

basic model that gives a good compromise between 

complexity and performance. In such a model, state transition 

matrix F and noise w are given by: 

 

  (2) 

 

With R a zero mean white Gaussian noise of 

assumed known variance [3], 

 

 

 

In addition to the standard state model are measurement 

models. Absolute sensor data is considered, as well as 

observations from IMUs. These data are obtained by 

transforming data given by accelerometers from the body 

frame to the reference frame using gyroscopes [11]. 

C. User Interface and Graphical Feedback 

The proposed interface provides near-real-time and 

immediate flight path data from jumps based on sensor 

readings, with relevant data readily available, e.g. above 

ground level (AGL) and time. Figure 1 and Fig. 2 show 2D 

and 3D flight data and graphics of a real jump respectively. 

These figures and analyses were generated within minutes 

after data is collected from sensors. In addition to immediate 

feedback from jumps, the software affords a simulation 

environment in which novices or trainees can simulate failure 

recovery from broken steering lines and chute malfunctions 

before real jumps to prevent real injuries. 

 

      
(a) (b) 

 
Fig. 1 Example of 2D flight data (a) landing in narrow clearing (b) 

close up of final maneuver, turn at 380 ft. AGL 

 

 Figure 1(a) illustrates the 2D feedback from a real jump in 

which a smokejumper avoided trees in a clearing of only 100 

ft, as illustrated by the yellow line. The interface also provides 

pertinent data, including the fact that the jumper exited the 

aircraft at 9:07:14 with winds of 4 mph. 

 Figure 1(b) provides more detail to the landing of the same 

jump. The close up view shows that to avoid the trees in the 

narrow landing space, the jumper turned at 380 ft. AGL and 

landed at 9:08:43. This maneuver within the last 400 ft. above 

ground level are crucial to safe maneuvers in such a tight 
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space. The flight data captured from the system allow for 

identification of critical junctures in the flight trajectory, such 

as the braking and turns used in this example, that lead to  

crashes vs safe landings.  

 Figure 2 illustrates the 3D rendering of the final approach 

and provides even greater detail. In this view, the user can 

observe obstacles avoided and garner a better spatial 

awareness of the flight. 

 

 
 

Fig. 2 Example of 3D flight data  

 

The 3D view from the system in this case was in relatively 

flat terrain, yet the system is capable of rendering and 

displaying jumps with steeper slopes. 

 In addition to the jumper flight path, the developed system 

also makes available the aircraft flight path, providing yet 

another powerful analytical capability for use in 

near-real-time tracking, post flight analysis, and 

simulation/training purposes. Figure 3 illustrates an example 

of an aircraft flight path from another jump. During this jump, 

the plane circled at approximately 1,500 ft. AGL to release 

streamers for determining wind speed. The aircraft, shown in 

yellow, then increased to 2,000 ft. AGL where the 

smokejumper exited.  

 

 
Fig. 3 Example of aircraft flight path – information is immediately 

displayed via the tracking system 

 

IV. EXPERIMENTAL PROCEDURE 

A. Accident Investigation - Post Flight Data  

The system is useful as an accident investigation tool. For 

evaluation, the recorded flight data of a 2016 jump which 

resulted in injury was used as an input for the tracking 

software. The system analyzed the accident within 15 minutes 

after receiving the flight data and displayed in an intuitive 

graphical format. Note that in prior smokejumpers accident 

reports it took up to eight months and the amount of 

consolidated data included much less information and can cost 

thousands of dollars to generate. 

B. Training - Real-time Feedback, Flight Status 

Over 400 smokejumper skydives were tracked with the 

Skydiving Tracker within a span of 6 months, 200 of these 

were included in a Jump History. As an evaluation, the 

debriefing and progress of rookie jumpers at smokejumper 

bases was conducted via the described system. 

Key bases responsible for approximately 82 percent of fires 

jumped in the United State of America by smokejumpers 

tested the tracking system. The bases used the technology to 

both debrief and track rookie jumpers over a two week 

training, and the outcome of landing accuracy, i.e. distance to 

spot, was measured and considered along with wind speed.  

V. RESULTS 

A. Debriefing Feedback  

Figure 4 shows the flight data used and informs how well 

jumpers, pilots and spotters worked as a team. In total, four 

jumpers (1,2,3,4) were tracked. The green and red designate 

jumpers from the two separate aircraft. The jumpers exited in 

two passes of the aircraft and into 13 mph winds, the two 

passes are shown by the red and green lines – these were 

moved and scaled to fit within the image, but are available to 

scale in the real output. The yellow “x” denotes the landing 

target, and the landing locations are marked with large green 

and red numbers. This provides several forms of useful 

feedback.  

 

 
Fig. 4 Example debrief for spotters, jumpers and pilots 

 

Firstly, the green flight path deviated 400 ft. from an ideal 

flight path (green line drawn). Moreover, jumper 1 landed 500 

ft. away from target and crashed into a tree. Meanwhile, 

jumper 2 landed 300 ft. from target. Finally, in contrast, for 

the second pass of jumpers, both jumpers 3 and 4 landed 

within 100 ft. of the target. These tools assist in training to 

pinpoint useful flight paths for pilots and spotters, and further 

to ensure that jumpers land safely and on target. 

B. Training - Real-time Feedback, Flight Status 

A total of 11 planeloads and 75 jumps were tracked with the 

system. Table I shows the data collected from this experiment. 
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TABLE I 

WIND SPEED vs. DISTANCE TO SPOT 

 
 

 

 

 

Wind Speed 
 

Distance  

To Spot 

0-5 mph 6-10 mph 
11-15 

mph 

0-55 ft. 6 jumps   

56-110 ft. 24 jumps 4 jumps 6 jumps 

111-220 ft. 7 jumps 15 jumps  

221-330 ft.  13 jumps  

*first week *second week *veteran jumper 

 

Recall that the data in Table I were collected from key bases 

responsible for approximately 82 percent of fires jumped in 

the United State of America. The bases used the tracker 

technology to both debrief and track rookie jumpers over a 

two week training, and the outcome of landing accuracy, i.e. 

distance to spot, was measured and compared with various 

wind speeds in May and June of 2016. 

Table I shows that while the rookie jumpers landed an 

average of over 200 feet from spot in their 1st week, by their 

second week they were landing within roughly 100 feet from 

spot – a dramatic improvement. The training, debriefing and 

precise information provided as feedback can attribute to this 

increased performance. Note that the landing distance to spot 

is one of the key measures of their success and safety, since the 

closer a jumper lands to the spot (target), the less likely they 

are to land in dangerous areas or to crash into trees. 

Unsurprisingly, the well-trained veteran jumpers performed 

well, landing at within 70 feet of spot in 11 mph winds and 

landing within 52 feet with lower winds. 

VI. CONCLUDING REMARKS 

In this work, a method for error-correction and sensor 

consolidation for skydiver tracking is presented. The system is 

compatible with low-cost tracking hardware and affords rapid 

training, real-time tracking, intuitive feedback and status 

notification. The system also makes use of pre-jump data for 

debriefing purposes. Furthermore, post-jump analyses are 

provided for accident investigation. Over four-hundred jumps 

were performed to evaluate the proposed method with 

encouraging results. Real data from military and 

smokejumpers demonstrate a marked improvement in jump 

accuracy for novice training purposes. For post flight testing, 

a 2016 accident was analyzed within fifteen minutes after 

receiving the flight data, including flight path and detailed 3D 

visualization. This compares well with the real accident 

investigation, which spanned months until completion. 
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